FPGA Implementations of Pairing using Residue Number System and Lazy Reduction

Ray Cheung ¹ Sylvain Duquesne ² Junfeng Fan ⁴ Nicolas Guillermin ^{2,3} Ingrid Verbauwhede ⁴ Gavin Yao¹

> ¹ Department of Electronic Engineering City University of Hong Kong, Hong Kong SAR,

² IRMAR, UMR CNRS 6625, Université Rennes 1 Campus de Beaulieu, 35042 Rennes cedex, France

³ DGA.IS, La Roche Marguerite - 35170 - Bruz, France

⁴ ESAT/SCD-COSIC, Katholieke Universiteit Leuven Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

Oct, 2011

- Pairing Coprocessor Design
- Implementation Results

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

2/24

Getting the fastest hardware implementation for a 128 bit security Pairing

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Getting the fastest hardware implementation for a 128 bit security Pairing

supersingular curves/small char.	ordinary curves/big char.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Getting the fastest hardware implementation for a 128 bit security Pairing

supersingular curves/small char.	ordinary curves/big char.
faster hardware architecture frobenius parallelism	

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Getting the fastest hardware implementation for a 128 bit security Pairing

supersingular curves/small char.	ordinary curves/big char.
faster hardware architecture	faster software implementations
frobenius	embedding degree
parallelism	smaller curves

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Getting the fastest hardware implementation for a 128 bit security Pairing

supersingular curves/small char.	ordinary curves/big char.
faster hardware architecture	faster software implementations
frobenius	embedding degree
parallelism	smaller curves

Question : Can we bridge the gap to make ordinary curves win?

(日)

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

- Pairing Coprocessor Design
- Implementation Results
- 5 Conclusions

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

4/24

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

What is Pairing and how do we use it?

A pairing is a bilinear map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ with $\mathbb{G}_1 \times \mathbb{G}_2$ and \mathbb{G}_T groups with hard Discrete Logarithm

・ロト ・四ト ・ヨト ・ヨト

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

What is Pairing and how do we use it?

A pairing is a bilinear map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ with $\mathbb{G}_1 \times \mathbb{G}_2$ and \mathbb{G}_T groups with hard Discrete Logarithm

Useful for :

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

What is Pairing and how do we use it?

A pairing is a bilinear map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ with $\mathbb{G}_1 \times \mathbb{G}_2$ and \mathbb{G}_T groups with hard Discrete Logarithm

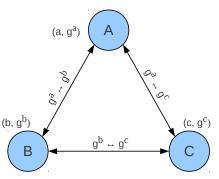
Useful for :

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

What is Pairing and how do we use it?

A pairing is a bilinear map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ with $\mathbb{G}_1 \times \mathbb{G}_2$ and \mathbb{G}_T groups with hard Discrete Logarithm

Useful for :

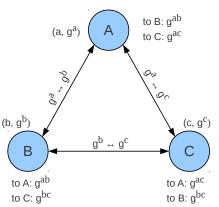


Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

What is Pairing and how do we use it?

A pairing is a bilinear map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ with $\mathbb{G}_1 \times \mathbb{G}_2$ and \mathbb{G}_T groups with hard Discrete Logarithm

Useful for :

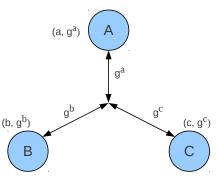


Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

What is Pairing and how do we use it?

A pairing is a bilinear map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ with $\mathbb{G}_1 \times \mathbb{G}_2$ and \mathbb{G}_T groups with hard Discrete Logarithm

Useful for :

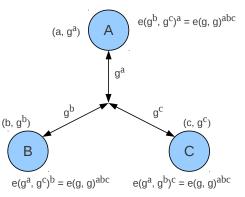


Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

What is Pairing and how do we use it?

A pairing is a bilinear map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ with $\mathbb{G}_1 \times \mathbb{G}_2$ and \mathbb{G}_T groups with hard Discrete Logarithm

Useful for :



Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

What is Pairing and how do we use it?

A pairing is a bilinear map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ with $\mathbb{G}_1 \times \mathbb{G}_2$ and \mathbb{G}_T groups with hard Discrete Logarithm

Useful for :

- Three-party one-round Diffie-Hellman key agreement [Joux'00]
- Identity-based encryption [Boneh⁺01]
- Short signature
 [Boneh⁺01]
- Blind signature
 [Boldyreva'03]

・ロト ・ 雪 ト ・ ヨ ト

5/24

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

Barreto-Naehrig Curves

BN curve over \mathbb{F}_{p} :

$$y^2 = x^3 + b$$

where $b \neq 0$ such that $\#E = \ell$

$$p = 36u^4 + 36u^3 + 24u^2 + 6u + 1$$

 $\ell = 36u^4 + 36u^3 + 18u^2 + 6u + 1$

for $u \in \mathbb{Z}$ and p, ℓ primes.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

Barreto-Naehrig Curves

BN curve over \mathbb{F}_{p} :

$$y^2 = x^3 + b$$

where $b \neq 0$ such that $\#E = \ell$

$$p = 36u^4 + 36u^3 + 24u^2 + 6u + 1$$

$$\ell = 36u^4 + 36u^3 + 18u^2 + 6u + 1$$

for $u \in \mathbb{Z}$ and p, ℓ primes.

Very adapted for 128 bits security

<ロト <回 > < 回 > < 回 > .

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

Pairing Parameter Selection

Chosen curves

Security	U	$\log_2 p$
126-bit	$-(2^{62}+2^{55}+1)$	254
128-bit	$-(2^{63}+2^{22}+2^{18}+2^7+1)$	258
192-bit	$-(2^{160} + 2^{74} + 2^{12} + 1)$	646

<ロ> <同> <同> < 同> < 同> < 同> <

æ

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

Optimal Ate Pairing on BN Curves

Require:

 $P \in E(\mathbb{F}_p)[\ell], Q = (x_Q \gamma^2, y_Q \gamma^3) \in E(\mathbb{F}_{p^{12}}) \cap \operatorname{Ker}(\pi_p - p)$ with $x_Q, y_Q \in \mathbb{F}_{p^2}, r = |6u + 2| = \sum_{i=0}^{s-1} r_i 2^i$, where u < 0. **Ensure:** $a_{opt}(Q, \dot{P}) \in \mathbb{F}_{p^{12}}$ 1: $T = (X_T \gamma^2, Y_T \gamma^3, Z_T) \leftarrow (x_O \gamma^2, v_O \gamma^3, 1), f \leftarrow 1$ 2: for i = s - 2 downto 0 do 3: $T, a \leftarrow dbl(T, P), f \leftarrow f^2 \cdot a$ 4: if $r_i = 1$ then $T, q \leftarrow add(T, Q, P), f \leftarrow f \cdot q$ 5: end if 6. 7. end for 8: $T \leftarrow -T$, $f \leftarrow f^{p^6}$ (f^{p^6} is equivalent to f^{-1}) 9: $Q_1 \leftarrow \pi_p(Q), Q_2 \leftarrow -\pi_p(Q_1)$ 10: $T, a \leftarrow \operatorname{add}(T, Q_1, P), f \leftarrow f \cdot a$ 11: $T, a \leftarrow \operatorname{add}(T, Q_2, P), f \leftarrow f \cdot a$ 12: $f \leftarrow \left(f^{p^6-1}\right)^{p^2+1}$ 13: $f \leftarrow f^{(p^4 - p^2 + 1)/\ell}$ 14: return f

A (1) > A (2) > A (2) > A

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

Optimal Ate Pairing on BN Curves

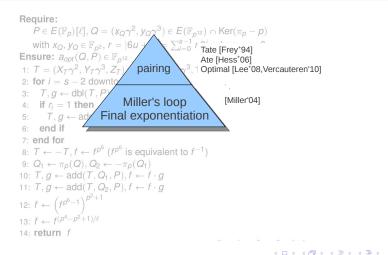
Require: $P \in E(\mathbb{F}_p)[\ell], Q = (x_Q \gamma^2, y_Q \gamma^3) \in E(\mathbb{F}_{p^{12}}) \cap \operatorname{Ker}(\pi_p - p)$ with $x_0, y_0 \in \mathbb{F}_{p^2}, r = |6u|$ Ensure: $a_{opt}(Q, P) \in \mathbb{F}_{p^{12}}$ 1: $T = (X_T \gamma^2, Y_T \gamma^3, Z_T)$ pairing 2: for i = s - 2 downto 3: $T, a \leftarrow dbl(T, P), f \leftarrow f^2 \cdot c$ 4: if $r_i = 1$ then 5: $T, q \leftarrow \operatorname{add}(T, Q, P), f \leftarrow f \cdot q$ 6 end if 7. end for 8: $T \leftarrow -T, f \leftarrow f^{p^6}$ (f^{p^6} is equivalent to f^{-1}) 9: $Q_1 \leftarrow \pi_n(Q), Q_2 \leftarrow -\pi_n(Q_1)$ 10: $T, a \leftarrow add(T, Q_1, P), f \leftarrow f \cdot a$ 11: $T, g \leftarrow \operatorname{add}(T, Q_2, P), f \leftarrow f \cdot g$ 12: $f \leftarrow \left(f^{p^6-1}\right)^{p^2+1}$ 13: $f \leftarrow f^{(p^4 - p^2 + 1)/\ell}$ 14: return f

・ロット (母) ・ ヨ) ・ コ)

3

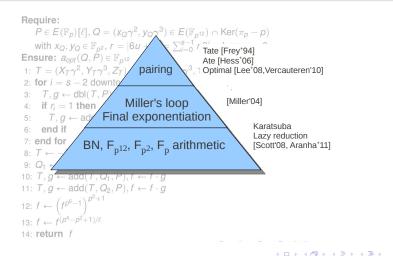
Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

Optimal Ate Pairing on BN Curves



Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

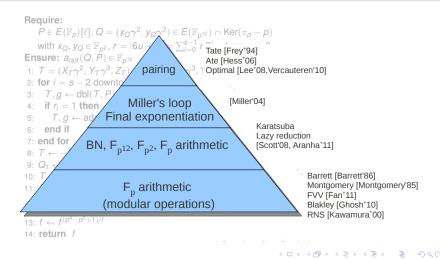
Optimal Ate Pairing on BN Curves



3

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

Optimal Ate Pairing on BN Curves



Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

Residue Number System (RNS)

RNS is defined by *n* pairwise coprime integer constants:

 $\mathfrak{B} = \{b_1, b_2, \cdots, b_n\}.$ $M_{\mathfrak{B}} := \prod_{i=1}^n b_i, b_i \in \mathfrak{B}$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

Residue Number System (RNS)

RNS is defined by *n* pairwise coprime integer constants:

 $\mathfrak{B} = \{b_1, b_2, \cdots, b_n\}.$ $M_{\mathfrak{B}} := \prod_{i=1}^n b_i, b_i \in \mathfrak{B}$

Any integer X, $0 \leq X < M_{\mathfrak{B}}$, X is uniquely represented by:

 $\mathfrak{X} = \{X \mod b_1, X \mod b_2, \cdots, X \mod b_n\},\$

・ロット (母) ・ ヨ) ・ コ)

3

9/24

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

Residue Number System (RNS)

RNS is defined by *n* pairwise coprime integer constants:

 $\mathfrak{B} = \{b_1, b_2, \cdots, b_n\}.$ $M_{\mathfrak{B}} := \prod_{i=1}^n b_i, b_i \in \mathfrak{B}$

Any integer $X, 0 \leq X < M_{\mathfrak{B}}, X$ is uniquely represented by:

 $\mathfrak{X} = \{X \mod b_1, X \mod b_2, \cdots, X \mod b_n\},\$

Arithmetic operations on RNS ($\mathbb{Z}/M_{\mathfrak{B}}\mathbb{Z}$)		
Normal	RNS	
${\it R}={\it X}\pm{\it Y} model{M}_{\mathfrak{B}}$	· · · · ·	
$R = X \cdot Y \mod M_{\mathfrak{B}}$	$r_i = x_i \cdot y_i \mod b_i$	
$R = X/Y \mod M_{\mathfrak{B}}$	$r_i = x_i y_i^{-1} \mod b_i$	
only if $gcd(Y, M_{\mathfrak{B}}) = 1$		

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

RNS Montgomery reduction [Bajard+98]

RNS Montgomery – $M_{\mathfrak{B}}$

- **Input:** $A = aM_{\mathfrak{B}} \mod p$ and $B = bM_{\mathfrak{B}} \mod p$
- **Output:** $T = abM_{\mathfrak{B}} \mod p$

in B

- 1: $T_{\mathfrak{B}} \leftarrow A_{\mathfrak{B}}B_{\mathfrak{B}}$
- 2: $Q_{\mathfrak{B}} \leftarrow T_{\mathfrak{B}} \cdot (-p)^{-1}$
- 3: $S_{\mathfrak{B}} \leftarrow (T + Q_{\mathfrak{B}}p)/M_{\mathfrak{B}}$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

RNS Montgomery reduction [Bajard+98]

RNS Montgomery – $M_{\mathfrak{B}}$

- **Input:** $A = aM_{\mathfrak{B}} \mod p$ and $B = bM_{\mathfrak{B}} \mod p$
- **Output:** $T = abM_{\mathfrak{B}} \mod p$
 - in \mathfrak{B} 1: $T_{\mathfrak{B}} \leftarrow A_{\mathfrak{B}}B_{\mathfrak{B}}$
 - 2: $Q_{\mathfrak{B}} \leftarrow T_{\mathfrak{B}} \cdot (-p)^{-1}$
 - 3: $S_{\mathfrak{B}} \leftarrow (T + Q_{\mathfrak{B}}p)/M_{\mathfrak{B}}$

 $gcd(M_{\mathfrak{B}}, M_{\mathfrak{B}}) = M_{\mathfrak{B}} \neq 1$ $M_{\mathfrak{B}}^{-1}$ does not exist in \mathfrak{B} .

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

RNS Montgomery reduction [Bajard⁺98]

RNS Montgomery – $M_{\mathfrak{B}}$

Input: $A = aM_{\mathfrak{B}} \mod p$ and $B = bM_{\mathfrak{B}} \mod p$

Output: $T = abM_{\mathfrak{B}} \mod p$

in
$$\mathfrak{B}$$
 in \mathfrak{C}
1: $T_{\mathfrak{B}} \leftarrow A_{\mathfrak{B}} B_{\mathfrak{B}}$ $T_{\mathfrak{C}} \leftarrow A_{\mathfrak{C}} B_{\mathfrak{C}}$
2: $Q_{\mathfrak{B}} \leftarrow T_{\mathfrak{B}} \cdot (-p)^{-1}$

4:
$$S_{\mathfrak{C}} \leftarrow (T_{\mathfrak{C}} + Q_{\mathfrak{C}} p)(M_{\mathfrak{B}}^{-1})_{\mathfrak{C}}$$

Introduce a new base \mathfrak{C} to perform division by $M_{\mathfrak{B}}$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

RNS Montgomery reduction [Bajard⁺98]

RNS Montgomery – $M_{\mathfrak{B}}$

Input: $A = aM_{\mathfrak{B}} \mod p$ and $B = bM_{\mathfrak{B}} \mod p$

Output: $T = abM_{\mathfrak{B}} \mod p$

Introduce a new base \mathfrak{C} to perform division by $M_{\mathfrak{B}}$.

Needs the computation of Base Extension [Kawamura+00]

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

3

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

RNS complexity and Lazy reduction

RNS Montgomery		Conventional Montgomery
Multiplication : Reduction (RED):	2 <i>n</i> MUL 2 <i>n</i> ² + 3 <i>n</i> MUL	Multiplication: n^2 MUL Reduction: $n^2 + n$ MUL
AB mod p:	2 <i>n</i> ² + 5 <i>n</i> MUL	AB mod p: $2n^2 + n$ MUL

・ロト ・四ト ・ヨト ・ヨト

11/24

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

RNS complexity and Lazy reduction

RNS Montgomery		Conventional Montg	omery
Multiplication :	2 <i>n</i> MUL	Multiplication:	n² MUL
Reduction (RED):	2 <i>n</i> ² + 3 <i>n</i> MUL	Reduction:	$n^2 + n$ MUL
<i>AB</i> mod <i>p</i> :	2 <i>n</i> ² + 5 <i>n</i> MUL	AB mod p:	2 <i>n</i> ² + <i>n</i> MUL
$AB + CD \mod p$:	2 <i>n</i> ² + 7 <i>n</i> MUL	$AB + CD \mod p$:	3 <i>n</i> ² + <i>n</i> MUL

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

1/24

RNS complexity and Lazy reduction

RNS Montgomery		Conventional Monto	gomery
Multiplication :		Multiplication:	
Reduction (RED):	2n MUL	Reduction:	n ² MUL
	2 <i>n</i> ² + 3 <i>n</i> MUL		$n^2 + n$ MUL
AB mod p:	_	AB mod p:	_
	2 <i>n</i> ² + 5 <i>n</i> MUL		2 <i>n</i> ² + <i>n</i> MUL
$AB + CD \mod p$:		$AB + CD \mod p$:	
	2 <i>n</i> ² + 7 <i>n</i> MUL		3 <i>n</i> ² + <i>n</i> MUL
$\sum_{i=1}^{k} A_i B_i \mod p$:		$\sum_{i=1}^{k} A_i B_i \mod p$:	
$2n^2 +$	(3+2k)n MUL	(1 +	$(k)n^2 + n$ MUL
	CHES 2011, Nara	FPGA Implementation of Pairin	▲ 돌 ▶ ▲ 돌 → 오 ng using RNS 1*
	CHES 2011, Nara	react implementation of Pairin	ig using nito

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

Theoretical conclusions

 Lazy reduction reduces the complexity of Pairings [Aranha⁺11]

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

12/24

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

Theoretical conclusions

- Lazy reduction reduces the complexity of Pairings [Aranha⁺11]
- RNS reduces the complexity of lazy reduction

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

Theoretical conclusions

- Lazy reduction reduces the complexity of Pairings [Aranha⁺11]
- RNS reduces the complexity of lazy reduction
- RNS involves easy parallelism

(日)

э

Pairings and Barreto-Naehrig Curves Residue number system (RNS) RNS Montgomery

Theoretical conclusions

- Lazy reduction reduces the complexity of Pairings [Aranha⁺11]
- RNS reduces the complexity of lazy reduction
- RNS involves easy parallelism

Remains to verify it "in real world"

(日)

э

Architectural Design I Further Optimization Architectural Design II

Pairing Coprocessor Design

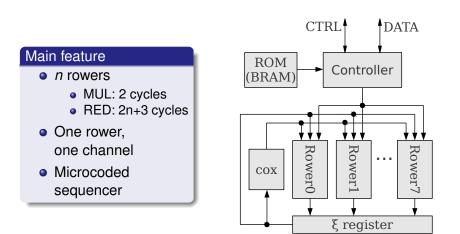
4 Implementation Results

5 Conclusions

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Architectural Design I Further Optimization Architectural Design II

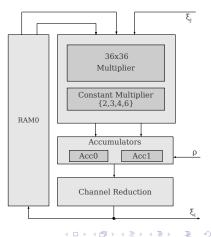
Cox-Rower Architecture [Kawamura+00]



Architectural Design I Further Optimization Architectural Design II

Rower Design

- 2 accumulators
- Small-constant multiplier
- 3-port RAMs
- Same data path



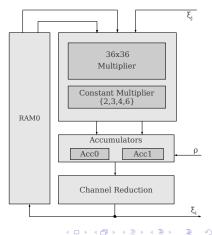
Architectural Design I Further Optimization Architectural Design II

Rower Design

Underlying Field

•
$$\mathbb{F}_{\rho^2} = \mathbb{F}_{\rho}[\mathbf{i}]/(\mathbf{i}^2 + 1)$$

•
$$\mathbb{F}_{\rho^{12}} = \mathbb{F}_{\rho^2}[\gamma]/(\gamma^6 - (1+i))$$



Architectural Design I Further Optimization Architectural Design II

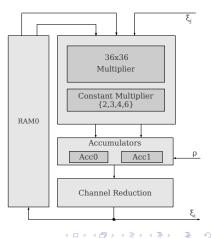
Rower Design

Underlying Field

•
$$\mathbb{F}_{p^2} = \mathbb{F}_p[\mathbf{i}]/(\mathbf{i}^2 + 1)$$

•
$$\mathbb{F}_{p^{12}} = \mathbb{F}_{p^2}[\gamma]/(\gamma^6 - (1 + \mathbf{i}))$$

$$(x_0 + x_1 \mathbf{i})(y_0 + y_1 \mathbf{i})(1 + \mathbf{i})$$



Architectural Design I Further Optimization Architectural Design II

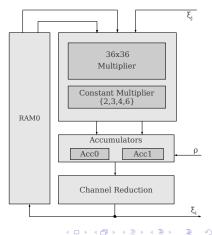
Rower Design

Underlying Field

•
$$\mathbb{F}_{p^2} = \mathbb{F}_p[\mathbf{i}]/(\mathbf{i}^2 + 1)$$

•
$$\mathbb{F}_{p^{12}} = \mathbb{F}_{p^2}[\gamma]/(\gamma^6 - (1+\mathbf{i}))$$

$$(x_0 + x_1 \mathbf{i})(y_0 + y_1 \mathbf{i})(1 + \mathbf{i}) = (x_0 y_0 - x_1 y_1 - x_0 y_1 - x_1 y_0) + (x_0 y_0 - x_1 y_1 + x_0 y_1 + x_1 y_0) \mathbf{i}$$



Architectural Design I Further Optimization Architectural Design II

Further Optimization

Observations

• Computational intensiveness: base extension.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

Architectural Design I Further Optimization Architectural Design II

Further Optimization

Observations

- Computational intensiveness: base extension.
- Base extension: *n*² multiplications by constant.

Architectural Design I Further Optimization Architectural Design II

Further Optimization

Observations

- Computational intensiveness: base extension.
- Base extension: *n*² multiplications by constant.
- Constant is determined by base \mathfrak{B} and \mathfrak{C} .

Architectural Design I Further Optimization Architectural Design II

Further Optimization

Observations

- Computational intensiveness: base extension.
- Base extension: *n*² multiplications by constant.
- Constant is determined by base \mathfrak{B} and \mathfrak{C} .
- Constant size is 35 bits.

Architectural Design I Further Optimization Architectural Design II

Further Optimization

Observations

- Computational intensiveness: base extension.
- Base extension: *n*² multiplications by constant.
- Constant is determined by base \mathfrak{B} and \mathfrak{C} .
- Constant size is 35 bits.
- With selected bases, bit-length: $35 \rightarrow 25$.

Architectural Design I Further Optimization Architectural Design II

Further Optimization

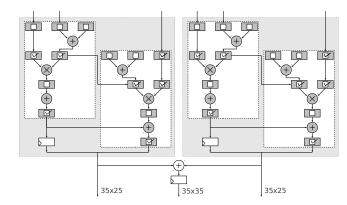
Observations

- Computational intensiveness: base extension.
- Base extension: *n*² multiplications by constant.
- Constant is determined by base \mathfrak{B} and \mathfrak{C} .
- Constant size is 35 bits.
- With selected bases, bit-length: $35 \rightarrow 25$.
- Bit-length of the constant is shortened.

Architectural Design I Further Optimization Architectural Design II

Dual mode 4-stage pipelined MUL

- One 35×35 multiplier
- Two 35×25 multipliers
- @250MHz on Virtex-6
- MUL: 2 cycles



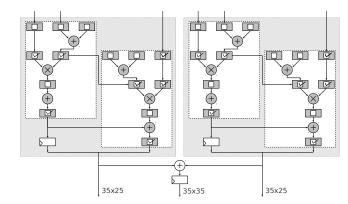
< □ > < □

< ≣⇒

Architectural Design I Further Optimization Architectural Design II

Dual mode 4-stage pipelined MUL

- One 35×35 multiplier
- Two 35×25 multipliers
- @250MHz on Virtex-6
- MUL: 2 cycles
- RED: n+4 cycles (v.s. 2n+3 cycles)



< 17 >

< 3 →

Comparison

Agenda

- 2 Backgrounds
- 3 Pairing Coprocessor Design
- Implementation Results

5 Conclusions

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Comparison

Pairing Parameter Selection

	Design I		
Security	U	$\log_2 p$	
126-bit	$-(2^{62}+2^{55}+1)$	254	
128-bit	$-(2^{63}+2^{22}+2^{18}+2^7+1)$	258	
192-bit	$-(2^{160}+2^{74}+2^{12}+1)$	646	

	Design II	
126-bit	$-(2^{62}+2^{55}+1)$	254

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

19/24

Comparison

Logic Utilization and Cycle Count

Logic utilization

Design	n	Device Multipliers L		Logic	Embedded	
				Elements	Memory	
	8	Cyclone II	35 18multipliers	14274 LC	67 M4k	
1	8	Stratix III	72 DSP18el	4233 ALMs	1 M144k + 18 M9k	
(Altera)	19	Stratix III	171 DSP18el	9910 ALMs	1 M144k + 40 M9k	
ll (Xilinx)	8	Virtex-6	32 DSP48E1s	7032 Slices	45 18Kb BRAMs	

<ロ> <同> <同> < 同> < 同> < 同> <

Comparison

Logic Utilization and Cycle Count

Logic utilization

Design	n	Device	Multipliers	Logic	Embedded	
				Elements	Memory	
	8	Cyclone II	35 18multipliers	14274 LC	67 M4k	
1	8	Stratix III	72 DSP18el	4233 ALMs	1 M144k + 18 M9k	
(Altera)	19	Stratix III	171 DSP18el	9910 ALMs	1 M144k + 40 M9k	
ll (Xilinx)	8	Virtex-6	32 DSP48E1s	7032 Slices	45 18Kb BRAMs	

Cycle count and Latency

	Curve	Cycles	Technology	Frequency	Latency
Design I	BN ₁₂₆	176111	Cyclone II	91 MHz	1.93 ms
	BN ₁₂₆	176111	Stratix III	165 MHz	1.07 ms
	BN ₁₂₈	192502	Stratix III	165 MHz	1.16 ms
	BN ₁₉₂	789849	Stratix III	131 MHz	6.02 ms
Design II	BN ₁₂₆	143111	Virtex-6	250 MHz	0.57 ms

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

Comparison

Comparison

Design	Pairing/	Platform	Algorithm	Area	Freq.	Cycle	Delay
	Security[bit]				[MHz]		[ms]
Design	optimal ate	Altera	RNS	4233 ALMs	165	176,111	1.07
I	126	(Stratix III)	(Parallel)	72 DSPs	105		
Design	optimal ate	Xilinx	RNS	7032 slices	250	143,111	0.573
II	126	(Virtex-6)	(Parallel)	32 DSPs	230		
Fan ⁺ 11	ate/128	Xilinx	HMM	4014 slices	210	336,366	1.60
i ali i i	opt. ate/128	(Virtex-6)	(Parallel)	42 DSPs	210	245,430	1.17
Estibals'10	Tate F _{35.97}	Xilinx	-	4755 Slices	192	428,853	2.23
LSUDAIS 10	128	(Virtex-4)		7 BRAMs			
Aranha ⁺ 10	opt. Eta ⊮ ₂₃₆₇	Xilinx	-	4518 Slices	220	773.960*	3.52
	128	(Virtex-4)				773,300	0.52
Ghosh ⁺ 11	$\eta_T \mathbb{F}_{2^{1223}}$	Xilinx		15167 Slices	250	76,000*	0.19
GIUSIT	128	(Virtex-6)	-				
Beuchat+10	optimal ate	Core	Montgomery	-	2800	2 220 000	0.83
	126	i7				2,330,000	0.05
Aranha ⁺ 11	optimal ate	Phenom	Montgomery		3000	1 562 000	0.52
	126	Ш	Monigomery	-		1,562,000	0.52

Conclusions Q&A

Conclusions

Conclusions

- Pairing using RNS + lazy reduction.
- Ovel base selection specification.
- Hardware architectures.
- New speed record.

< 回 > < 回 > < 回 >

Conclusions Q&A

Thank you!