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Getting the fastest hardware implementation
for a 128 bit security Pairing

supersingular curves/small char. ordinary curves/big char.

faster hardware architecture faster software implementations
frobenius embedding degree
parallelism smaller curves

Question : Can we bridge the gap to make ordinary curves
win?
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What is Pairing and how do we use it?
A pairing is a bilinear map e : G1 �G2 Ñ GT with G1 �G2 and GT groups
with hard Discrete Logarithm

Useful for :

Three-party one-round
Diffie-Hellman key
agreement [Joux’00]

Identity-based encryption
[Boneh�01]

Short signature
[Boneh�01]

Blind signature
[Boldyreva’03]
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Barreto-Naehrig Curves

BN curve over Fp:
y 2
� x 3

� b
where b � 0 such that #E � `

p � 36u4 � 36u3 � 24u2 � 6u � 1

` � 36u4 � 36u3 � 18u2 � 6u � 1

for u P Z and p, ` primes.

Very adapted for 128 bits security
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Pairing Parameter Selection

Chosen curves

Security u rlog2 ps

126-bit �p262 � 255 � 1q 254
128-bit �p263 � 222 � 218 � 27 � 1q 258
192-bit �p2160 � 274 � 212 � 1q 646
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Optimal Ate Pairing on BN Curves

pairing

Tate [Frey+94]
Ate [Hess+06]
Optimal [Lee+08,Vercauteren'10]pairing

Miller's loop
Final exponentiation

Tate [Frey+94]
Ate [Hess+06]
Optimal [Lee+08,Vercauteren'10]

[Miller'04]

pairing

Miller's loop
Final exponentiation

BN, Fp12, Fp2, Fp arithmetic 

Tate [Frey+94]
Ate [Hess+06]
Optimal [Lee+08,Vercauteren'10]

[Miller'04]
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(modular operations)
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Barrett [Barrett'86]
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FVV [Fan+11]
Blakley [Ghosh+10]
RNS [Kawamura+00]
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Residue Number System (RNS)

RNS is defined by n pairwise coprime integer constants:
B � tb1,b2, � � � ,bnu.

MB :�
±n

i�1 bi ,bi P B

Any integer X ,0 ¤ X   MB, X is uniquely represented by:
X � tX mod b1,X mod b2, � � � ,X mod bnu,

Arithmetic operations on RNS (Z{MBZ)

Normal RNS
R � X � Y mod MB ri � xi � yi mod bi
R � X � Y mod MB ri � xi � yi mod bi
R � X {Y mod MB ri � xi y�1

i mod bi

only if gcdpY ,MBq � 1
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RNS Montgomery reduction [Bajard�98]

RNS Montgomery – MB

Input: A � aMB mod p and
B � bMB mod p

Output: T � abMB mod p

in B
1: TB Ð ABBB

2: QB Ð TB � p�pq�1

3: QB
Base Extension

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑQC

3: SB Ð pT �QBpq{MB

5: SB
Base Extension

ÐÝÝÝÝÝÝÝÝÝÝÝÝÝSC

gcdpMB,MBq � MB � 1
M�1

B does not exist in B.
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RNS Montgomery reduction [Bajard�98]

RNS Montgomery – MB

Input: A � aMB mod p and
B � bMB mod p

Output: T � abMB mod p

in B in C
1: TB Ð ABBB TC Ð ACBC

2: QB Ð TB � p�pq�1

3: QB
Base Extension

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑQC

4: SC Ð pTC �QCpqpM�1
B qC

5: SB
Base Extension

ÐÝÝÝÝÝÝÝÝÝÝÝÝÝSC

Introduce a new base C to perform division by MB.

Needs the computation of Base Extension [Kawamura�00]
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RNS complexity and Lazy reduction

RNS Montgomery

Multiplication :
2n MUL

Reduction (RED):
2n2 � 3n MUL

Conventional Montgomery

Multiplication:
n2 MUL

Reduction:
n2 � n MUL

AB mod p:
2n2 � 5n MUL

AB mod p:
2n2 � n MUL

AB � CD mod p:
2n2 � 7n MUL

AB � CD mod p:
3n2 � n MUL

°k
i�1 Ai Bi mod p:

2n2 � p3 � 2k qn MUL

°k
i�1 Ai Bi mod p:

p1 � k qn2 � n MUL
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Theoretical conclusions

Lazy reduction reduces the complexity of Pairings
[Aranha�11]

RNS reduces the complexity of lazy reduction
RNS involves easy parallelism

Remains to verify it "in real world"
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Cox-Rower Architecture [Kawamura�00]

Main feature
n rowers

MUL: 2 cycles
RED: 2n+3 cycles

One rower,
one channel
Microcoded
sequencer

R
o
w

e
r0

Controller
ROM

(BRAM)

R
o
w

e
r1

...

R
o
w

e
r7

DATACTRL

ξ register

cox
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Rower Design

2 accumulators
Small-constant multiplier
3-port RAMs
Same data path

36x36

Multiplier

Constant Multiplier
{2,3,4,6}

Acc0 Acc1

Accumulators

Channel Reduction

ξj 

ρ

ξi

RAM0
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Rower Design

Underlying Field

Fp2 � Fpris{pi2 � 1q

Fp12 � Fp2rγs{pγ6 � p1 � iqq

px0 � x1iqpy0 � y1iqp1� iq
�px0y0 � x1y1 � x0y1 � x1y0q�

px0y0 � x1y1 � x0y1 � x1y0qi

36x36

Multiplier

Constant Multiplier
{2,3,4,6}

Acc0 Acc1

Accumulators

Channel Reduction

ξj 

ρ

ξi
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Further Optimization

Observations
Computational intensiveness: base extension.

Base extension: n2 multiplications by constant.
Constant is determined by base B and C.

Constant size is 35 bits.
With selected bases, bit-length: 35 Ñ 25.
Bit-length of the constant is shortened.
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Dual mode 4-stage pipelined MUL

One 35�35
multiplier

Two 35�25
multipliers

@250MHz
on Virtex-6

MUL: 2 cycles

RED: n+4 cycles
(v.s. 2n+3 cycles)

  

35x25 35x2535x35
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Pairing Parameter Selection

Design I

Security u rlog2 ps
126-bit �p262 � 255 � 1q 254
128-bit �p263 � 222 � 218 � 27 � 1q 258
192-bit �p2160 � 274 � 212 � 1q 646

Design II

126-bit �p262 � 255 � 1q 254
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Comparison

Logic Utilization and Cycle Count

Logic utilization
Design n Device Multipliers Logic Embedded

Elements Memory
8 Cyclone II 35 18multipliers 14274 LC 67 M4k

I 8 Stratix III 72 DSP18el 4233 ALMs 1 M144k + 18 M9k
(Altera) 19 Stratix III 171 DSP18el 9910 ALMs 1 M144k + 40 M9k

II 8 Virtex-6 32 DSP48E1s 7032 Slices 45 18Kb BRAMs(Xilinx)

Cycle count and Latency

Curve Cycles Technology Frequency Latency

Design I

BN126 176111 Cyclone II 91 MHz 1.93 ms
BN126 176111 Stratix III 165 MHz 1.07 ms
BN128 192502 Stratix III 165 MHz 1.16 ms
BN192 789849 Stratix III 131 MHz 6.02 ms

Design II BN126 143111 Virtex-6 250 MHz 0.57 ms
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Comparison

Design Pairing/ Platform Algorithm Area Freq. Cycle Delay
Security[bit] [MHz] [ms]

Design optimal ate Altera RNS 4233 ALMs
165 176,111 1.07

I 126 (Stratix III) (Parallel) 72 DSPs
Design optimal ate Xilinx RNS 7032 slices

250 143,111 0.573
II 126 (Virtex-6) (Parallel) 32 DSPs

Fan�11
ate/128 Xilinx HMM 4014 slices

210
336,366 1.60

opt. ate/128 (Virtex-6) (Parallel) 42 DSPs 245,430 1.17

Estibals’10
Tate F35�97 Xilinx

-
4755 Slices

192 428,853 2.23
128 (Virtex-4) 7 BRAMs

Aranha�10
opt. Eta F2367 Xilinx

- 4518 Slices 220 773,960� 3.52
128 (Virtex-4)

Ghosh�11
ηTF21223 Xilinx

- 15167 Slices 250 76,000� 0.19
128 (Virtex-6)

Beuchat�10
optimal ate Core

Montgomery - 2800 2,330,000 0.83
126 i7

Aranha�11
optimal ate Phenom

Montgomery - 3000 1,562,000 0.52
126 II
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Conclusions

Conclusions
1 Pairing using RNS + lazy reduction.
2 Novel base selection specification.
3 Hardware architectures.
4 New speed record.
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Q&A

Thank you!
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